Adaptive lifting for nonparametric regression
نویسندگان
چکیده
Many wavelet shrinkage methods assume that the data are observed on an equally spaced grid of length of the form 2J for some J . These methods require serious modification or preprocessed data to cope with irregularly spaced data. The lifting scheme is a recent mathematical innovation that obtains a multiscale analysis for irregularly spaced data. A key lifting component is the “predict” step where a prediction of a data point is made. The residual from the prediction is stored and can be thought of as a wavelet coefficient. This article exploits the flexibility of lifting by adaptively choosing the kind of prediction according to a criterion. In this way the smoothness of the underlying ‘wavelet’ can be adapted to the local properties of the function. Multiple observations at a point can readily be handled by lifting through a suitable choice of prediction. We adapt existing shrinkage rules to work with our adaptive lifting methods. We use simulation to demonstrate the improved sparsity of our techniques and improved regression performance when compared to both wavelet and non-wavelet methods suitable for irregular data. We also exhibit the benefits of our adaptive lifting on the real inductance plethysmography and motorcycle data.
منابع مشابه
A 'nondecimated' lifting transform
Classical nondecimated wavelet transforms are attractive for many applications. When the data comes from complex or irregular designs, the use of second generation wavelets in nonparametric regression has proved superior to that of classical wavelets. However, the construction of a nondecimated second generation wavelet transform is not obvious. In this paper we propose a new ‘nondecimated’ lif...
متن کاملMultivariate nonparametric regression using lifting
For regularly spaced one-dimensional data wavelet shrinkage has proven to be a compelling method for nonparametric function estimation. We argue that this is not the case for irregularly spaced data in two or higher dimensions. This article develops three methods for the multiscale analysis of irregularly spaced data based on the recently developed lifting paradigm by “lifting one coefficient a...
متن کاملNonparametric Regression in Exponential Families
Most results in nonparametric regression theory are developed only for the case of additive noise. In such a setting many smoothing techniques including wavelet thresholding methods have been developed and shown to be highly adaptive. In this paper we consider nonparametric regression in exponential families which include, for example, Poisson regression, binomial regression, and gamma regressi...
متن کاملA New Nonparametric Regression for Longitudinal Data
In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...
متن کاملAdaptive Nonparametric Regression with Conditional Heteroskedasticity
In this paper, we study adaptive nonparametric regression estimation in the presence of conditional heteroskedastic error terms. We demonstrate that both the conditional mean and conditional variance functions in a nonparametric regression model can be estimated adaptively based on the local profile likelihood principle. Both the one-step Newton-Raphson estimator and the local profile likelihoo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistics and Computing
دوره 16 شماره
صفحات -
تاریخ انتشار 2006